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Abstract
To investigate the structural relationships and the progression of functional electrical stimulation (FES)-induced regression of muscle atrophy up to 20 years of spastic 
paraplegia, clinical follow-up and muscle biopsies were performed in Vienna, Austria. Tissue composition and fiber morphology were analyzed by light microscopy 
in Padua, Italy. Histology confirms that: 1. the difference in average size of muscle fibers between mid-term (2 to 5 years) and long-term (5 to 20 years) paralyzed 
leg muscles is actually very small; 2. They maintain the striated appearance characteristic of normal skeletal muscle fibers even after 20 years of paralysis; 3. SDH 
histochemistry, a marker of mitochondrial content of muscle fibers, shows a dramatic decrease that is more pronounced in long-term paralyzed leg muscles. 4. Myosin 
ATPase histochemistry demonstrates that there is a progressive relative increase of the fast-glycolytic muscle fibers at the expenses of the oxidative muscle fibers. 
Together with our previous evidence of ultrastructural alterations of the activating and metabolic machineries and of the presence of muscle fibers with lower motor 
neuron denervation characteristics, these features explain the low-force output and the reduced endurance of paretic muscles; 5. After two-year of FES-training the 
deterioration process is reversed, taking the fast muscle fibers to almost normal size values for sedentary adults. The stable muscle atrophy that characterizes long-
lasting spastic paraplegia and the evidence that extent of FES-training recovery does not correlate with time from SCI strongly suggest that there are no upper-time 
limits to begin a FES training program.
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Introduction
There is numerous long-term spinal cord injury (SCI) patients 

(from 10 to 20 years of SCI) who could benefit from Functional 
Electrical Stimulation (FES) treatments, but information on their 
muscle conditions was scarce [1-3], before we reported on the extent 
of muscle atrophy in long-term thoracic-level upper motor neuron 
(UMN) paraplegia [4]. The many reports published have mostly 
studied muscle properties up to 3–5 years post-SCI [5]. Indeed, after 
the first few months, in which muscle mass decreases significantly, 
[6–8] muscle atrophy reaches a steady state. Within the first month, the 
thickness of the muscle bulk, measured by ultrasound, decreases up to 
40% [8,9]. We will indicate the period up to 3 months post SCI as the 
“early phase” of paraplegic atrophy. Afterwards, a 50% stable atrophy 
in spastic incomplete or complete paralysis is well documented up to 
2 years after SCI [9-14]. This time span (from 1.6 to 3.0 years) in the 
present paper is referred to as the “mid-term” phase (MT). Information 
on the following periods, in particular, up to 20 years post-SCI, as in 
our ‘long-term” (LT) group, remain quite poor [5,15]. For this reason, 
we decided twelve years ago to compare by functional and structural 
analyses, the muscles of SCI patients affected by either MT or LT 
complete UMN paraplegia. We reported that mid-term (2 years after 
SCI) and long-term (up to 20 years after injury) UMN injured muscle 
does not undergo the degenerative processes (muscle fiber substitution 
with adipose and fibrotic tissue) that devastate the muscles of 3-year 

lower motor neuron denervated subjects [16,17]. In UMN (spastic) 
paraplegia, human muscles seemed to reach and sustain a stable atrophy 
[4]. Histopathology confirmed that the difference in average size of 
muscle fibers between long-term and mid-term paralyzed leg muscles 
was actually progressing, but very small. We add here more information 
on fiber type composition/transformation of quadriceps m. in long-
term UMN-complete thoracic paraplegia by histochemical approaches 
and on the trophic effects observed after 2 years of FES training.
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Acid preincubated myofibrillar ATPase activity [22]: Sections 
were air dried for 10 min at room temperature and incubated in 100 
mM sodium acetate (pH 4.35) for 10 min a room temperature. Sections 
were then washed (2 changes x 1 min each) in 18 mM CaCl2 and 100 
mM Tris HCl (pH 7.8) before incubation in the ATP solution (together 
with the serial sections undergoing the Alkali Preincubated Myofibrillar 
ATPase Activity technique). After washing in 2 changes (30 sec per 
change) of distilled H2O, sections were incubated for 5 min in 2% (w/v) 
CoCl2, washed (2 changes x 30 sec each) in distilled H2O, incubated 
for 5 min in 2% (v/v) (NH4)2S in water, and then washed in distilled 
H2O (2 changes x 30 sec each). Finally, the sections were dehydrated 
in graded ethanol solutions (i.e., 70-90-100%), cleared in xylene, and 
mounted in permanent medium (Canada Balsam).

Images were acquired using a Zeiss microscope connected to a 
Leica DC 300F camera, under the same conditions that were used to 
photograph a reference ruler. The minimum transverse diameter of each 
muscle fiber was measured against the reference ruler. Morphometric 
analyses were performed with Scion Image for Windows version Beta 
4.0.2 (2000 Scion Corporation, Frederick, MD, USA), free software 
downloaded from the web site: www.scioncorp.com. 

Results
Size and fiber type composition of normal and UMN 
paraplegic muscle fibers before and after two years of FES 
training 

Generally, in UMN (spastic) paraplegia human muscles reach soon 
and maintain a stable atrophy (Table 1 and [4]). Equally clear is the 
fact that there is a substantial increase of the relative content of the fast 
type 2B fibers in the MT and LT SCI (Tables 2 and 3). Whether this is 
the results of muscle fiber transformation due to SCI-induced muscle 
disuse and unloading or the loss of slow type 1 and 2A muscle fiber 
types is still debated.

Materials and methods
Patients 

The study enrolled fifteen subjects who had experienced traumatic 
SCI affecting the upper motor neuron (from T4 to T12). Eight of them 
finished the study. All subjects enrolled in the project were volunteers, 
who had received detailed information and had signed an informed 
consent. 

We certify that all applicable regulations concerning the ethical use 
of human volunteers were followed during the course of this research. 
(Approval: EK-03-035-0403).

Biopsies were obtained as pre-FES sampling from patients 
who were going to undergo a 2-year FES treatment. Patients were 
divided into two groups: a mid-term group composed of six patients 
paralyzed from two to up five years and a long-term group formed by 
four patients paralyzed from six up to twenty years. All subjects were 
classified as ASIA A. Age, sex, body weight, height, etiology and level 
of SCI are reported in Kern et al. 2008 [4]. Clinical and functional 
assessments, muscle biopsies as well as follow-up were performed at the 
Institute of Physical Medicine and Rehabilitation, Wilhelminenspital, 
Vienna, (Austria), while light microscopy of bioptic specimens at the 
Department of Biomedical Science, University of Padova, Italy.

Muscle biopsies

Through a small skin incision (6mm in diameter), needle muscle 
biopsies were taken from the right and left vastus lateralis muscles 
before start and after 2 years of FES training for each patient, as 
described by Kern et al. 2004 [16]. The resulting specimens were then 
prepared either for light and/or electron microscopy.

Histochemistry

Fibre typing by succinate dehydrogenase (SDH) reaction: SDH 
staining was performed to distinguish between oxidative and non-
oxidative (or “less” oxidative) muscle fibers. Serial cross-sections from 
SM muscles were incubated for 60 min at 37°C in SDH incubation 
solution (0.1% nitro blue tetrazolium in 0.1M phosphate buffer [pH 
7.2-7.6] containing 0.1M sodium succinate) and then rinsed in distilled 
H2O (3 changes x 1 min). To remove unbound blue tetrazolium, the 
sections were incubated in 3 changes (1 min per change) of acetone in 
water solutions (30, 60, and 90% acetone) in first increasing and then 
decreasing order of acetone concentration. Sections were rinsed in 
distilled H2O for 3 changes (1 min each), dehydrated in graded ethanol 
solutions (i.e., 70, 90, and 100%), cleared in xylene, and finally mounted 
in permanent medium (Canada Balsam). 

Fibre typing by myofibrillar actomyosin ATPase histochemistry: 
Two different procedures were used for staining myofibrillar actomyosin 
ATPase following the methods described by Brooke and Kaiser [18,19] 
and by Guth and Samaha [20,21]. 

Alkali preincubated myofibrillar ATPase activity: Sections were 
air dried for 10 min at room temperature and then fixed for 3 min in 
5% (w/v) formaldehyde in a solution of 200 mM sodium cacodylate, 
68 mM CaCl2  and 340 mM sucrose (adjusted with HCl to pH 7.6 
before formaldehyde was added). After incubation in wash solution 
(100 mM Tris and 18 mM CaCl2; pH 7.8), an alkaline pre-incubation 
step was performed by maintaining the sections in 200 mM 2-amino-
3-methyl-1 propanol (pH 10.4) for 15 min at room temperature. After 
two successive 1 min incubations in the wash solution, sections were 
incubated in ATP solution (2.7 mM ATP, 90 mM CaCl2, 100 mM 
sodium barbital pH 9.4) for 45 min at 37°C. 

(µm +/- SD)
Type 2B Type 2A Type 1

Normal muscle 54,00+/-14,58 43,91+/-13,88 45,79+/-13,56
PRE-FES 44,17+/-4,88 42,81+/-4,33 41,42+/-4,28

POST-FES 60,53+/-3,44 not present 42,29+/-8,97

Table 1: Diameter of normal and UMN paralyzed human muscle fibers Pre and Post 2 
years of FES training

Type 2B Type 2A Type 1
(%)

Normal muscle 49 10 40
PRE-FES 68 11 20

POST-FES 85 0 15

Table 2: Percentage of fiber types in normal and UMN paralyzed human muscles

From SCI
(Years) Type 2B Type 2A Type 1

(%)
Normal muscle 49 10 40

PRE-FES <5 59 15 25
<5 76 0 24

POST-FES >5 80 4 15
>5 91 0 9

Table 3: Percentage of fiber types in UMN paralyzed human muscles in MT and LT SCI
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SDH staining

SDH is an oxidative enzyme localized in the mitochondria. The 
rodents type 1 fibers that have an oxidative metabolism stain darker 
than the type 2 fibers that have prevalently a glycolytic metabolism. 
These differences are less pronounced in human adult muscle. 
Nonetheless, the stain intensity of this mithochondrial enzyme 
decreases substantially in UMN paraplegic patient muscles (results not 
shown), suggesting a transition of the muscle fibers properties from 
those of the oxidative to those of the glycolytic muscle fibers.

Myosin ATPase, pH 4.35

Type 1 fibers stain dark, type 2A stain light, while the type 2B fibers 
are unstained. Decrease of the slow type of myosin is evident in UMN 
paraplegic muscles at mid-term, while it almost disappeared in the 
long-term UMN muscles, that are prevalently composed of fast type 
2B muscle fibers.

Myosin ATPase, pH 9.4

After incubation at pH 9.4, myosin enzymatic activity of the fast 
2B fiber type is relatively stable, whereas the slow myosin of Type 1 
fiber is labile. Thus, the fast fibers stain dark, while oxidative fiber types 
stain intermediate (Type 2A) or very light (Type 1). These features 
allow to identify and to determine size and relative content of the 3 
types of muscle fibers present in human Quadriceps m. (Tables 1 and 
2, respectively). In normal muscle, the fast type 2B muscle fibers have 
a larger size (around 55 µm of muscle fiber diamenter), while the 
oxidative muscle fibers (Types) 2A and 1 have around 45 µm of muscle 
fiber diamenter. Pooling all MT and LT SCI samples all the three types 
of muscle fibers decrease in diameter, while only the type 2B muscle 
fibers increase in diameter after two years of FES. On the other hand, 
Post-FES muscle fibers generally increase of about 50% in size. 

 The possible transformation of oxidative 2A muscle fibers to fast 
glycolytic muscle fibers is strongly suggested when the percentual 
content of the three different fiber types was determined, Table 2 shows 
that in the pooled results the percentual content increase from the 
normal value of 50% to 70% in UMN SCI biopsies before FES training 
and to 85% after two years of FES, mainly at the expense of  the 2A 
fiber types that are absent in this group of muscle biopsies. This trend is 
confirmed and more evident comparing the separated groups of mid-
term versus long-term UMN SCI muscle biopsies before and after 2 
years of FES.

On the other hand, some muscle biopsies contain variable amount 
of lower motorneuron-denervated muscle fibers (that, is severely 
atrophic muscle fibers positive with the anti-NCAM [4].

Discussion
Complete spinal cord injury results often in a significant loss of 

muscle mass, or atrophy, in the affected areas of the body, the severity 
and extent of which depends on the level of lesion and on the survival 
of the motor neurons. Muscle atrophy has been studied in SCI patients 
from a variety of points of view. However, most studies in literature 
are focused on the early post-injury phase and did not follow the 
progression of atrophy that occurs in the long run. In the last twenty 
years some of us have extensively studied long-term atrophy progression 
in lower motor neuron lesion (flaccid) patients and the perspectives 
of training these very difficult cases with a purpose-developed FES 
training (Vienna FES strategy for denervated degenerating muscles) 
[23-25]. We demonstrated that: 1. human skeletal muscles survive 
permanent denervation longer (years) than generally accepted; 2. FES 

started within the first year post-SCI provides the best results, but 
recovery of muscle mass and contractile function occur also in mid- 
(3 years) and long-term (up to 6 years) subjects, if purpose developed 
protocols, electrodes and stimulator (now commercially available) are 
used [26-36]. 

Over the years, the benefit of the use of functional electrical 
stimulation (FES) to restore movement of the limbs of paralyzed 
patients has been largely discussed. For this reason information on 
the long-term progression of atrophy would be actually extremely 
important for the treatment of patients since it could give important 
clues to physiotherapist on how and when starting FES rehabilitation 
procedures and when the results will be poor or very poor. To date, 
however, not much is known about the long-term progression of 
muscle atrophy in upper motor neuron lesion (or spastic) patients. 
Indeed, in 2008 we published the first and only study reporting results 
of UMN spastic paraplegia up to twenty years from SCI [4]. In that 
study we investigated the long-term progression of atrophy in spastic 
patients using a multidisciplinary approach that compared a mid-
term group to a long-term group of patients, suffering with complete 
UMN lesion of the spinal cord (T3-T11), enrolled in a 2-year FES 
rehabilitation program. Those results confirmed that the complete 
UMN SCI paraplegics loss 50% of muscle mass during the first few (3 
to 6) months but indicated very little progression of the muscle atrophy 
long-term (at least up to 20 years post injury), providing information 
that is of significant importance for the rehabilitation of long-term 
spastic patients. Furthermore, in the last 5 years we studied also elderly 
persons either performing high level amateur and competitive sports 
in their seventies or sedentary old septuagenarians before and after 3 
months of FES training [37-45]. In all these cases we added our evidence 
to an extensive literature [46], demonstrating the negative effects of 
poor physical activity and the trophic recovery after an increased level 
of voluntary [47,48] and/or FES-induced muscle contractile activity 
maintained for weeks, months or years [36-46]. 

Here we added further evidence that the stable atrophy of long-term 
UMN spastic paraplegia is accompanied by changes in the population 
of unloaded muscle fibers that explain, together with the ultrastructural 
modification we previously described [4], the poor or very poor fatigue 
resistance of these heavily unloaded skeletal muscles. We show here 
once again that FES training may reverse the atrophy process, though 
the amount of contractile activity inducible in clinical settings do not 
allow to reach the level needed to substantially increase the oxidative 
metabolism and thus endurance of paretic muscles. Nonetheless, other 
positive effects of the Vienna FES training is a beneficial hyperaemia of 
the stimulated muscles and of the skin with aesthetic modification of 
the legs and a valuable anti-decubitus ulcer effect [24,25].

Conclusions
The analyses of type of fibers in muscles of UMN paraplegic 

patient before and after two-years of FES training demonstrate a 
remarkable and significant size increase, restricted to fast type muscle 
fibers, that increases in percentage, possibly as the result of muscle 
fiber transformation related to the dramatic decrease of load that is 
determined by paraplegia and a wheel-chair life-style.

Indeed, there is a decrease of oxidative muscle fibers, both the slow 
type 1 muscle fiber up to the absence of 2A fiber type in POST-training 
patients. An increase in relative content of the type 2B fibers is evident 
and progresses with time of SCI. The diameter of the slow type 1 muscle 
fibers slightly decreasew with UMN, but do not change during SCI time 
progression or after FES-training. 
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Our conclusion is that muscle fibers adapt to unloading and to 
the decrease of contractile activity with fiber-type transformations. 
However, patent degeneration of the muscle tissue, as in the case of 
permanent long-term lower motor neuron denervation, was never 
observed. Furthermore, the fact that extent of training-induced results 
do not decreased with time from UMN SCI, is a strong evidence that 
there are no upper-time limits to begin FES.
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