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Abstract

To investigate the structural relationships and the progression of functional electrical stimulation (FES)-induced regression of muscle atrophy up to 20 years of spastic
paraplegia, clinical follow-up and muscle biopsies were performed in Vienna, Austria. Tissue composition and fiber morphology were analyzed by light microscopy
in Padua, Italy. Histology confirms that: 1. the difference in average size of muscle fibers between mid-term (2 to 5 years) and long-term (5 to 20 years) paralyzed
leg muscles is actually very small; 2. They maintain the striated appearance characteristic of normal skeletal muscle fibers even after 20 years of paralysis; 3. SDH
histochemistry, a marker of mitochondrial content of muscle fibers, shows a dramatic decrease that is more pronounced in long-term paralyzed leg muscles. 4. Myosin
ATPase histochemistry demonstrates that there is a progressive relative increase of the fast-glycolytic muscle fibers at the expenses of the oxidative muscle fibers.
Together with our previous evidence of ultrastructural alterations of the activating and metabolic machineries and of the presence of muscle fibers with lower motor
neuron denervation characteristics, these features explain the low-force output and the reduced endurance of paretic muscles; 5. After two-year of FES-training the
deterioration process is reversed, taking the fast muscle fibers to almost normal size values for sedentary adults. The stable muscle atrophy that characterizes long-
lasting spastic paraplegia and the evidence that extent of FES-training recovery does not correlate with time from SCI strongly suggest that there are no upper-time
limits to begin a FES training program.

lower motor neuron denervated subjects [16,17]. In UMN (spastic)
paraplegia, human muscles seemed to reach and sustain a stable atrophy
[4]. Histopathology confirmed that the difference in average size of
muscle fibers between long-term and mid-term paralyzed leg muscles
was actually progressing, but very small. We add here more information
on fiber type composition/transformation of quadriceps m. in long-
term UMN-complete thoracic paraplegia by histochemical approaches
and on the trophic effects observed after 2 years of FES training.

Introduction

There is numerous long-term spinal cord injury (SCI) patients
(from 10 to 20 years of SCI) who could benefit from Functional
Electrical Stimulation (FES) treatments, but information on their
muscle conditions was scarce [1-3], before we reported on the extent
of muscle atrophy in long-term thoracic-level upper motor neuron
(UMN) paraplegia [4]. The many reports published have mostly
studied muscle properties up to 3-5 years post-SCI [5]. Indeed, after
the first few months, in which muscle mass decreases significantly,
[6-8] muscle atrophy reaches a steady state. Within the first month, the
thickness of the muscle bulk, measured by ultrasound, decreases up to
40% [8,9]. We will indicate the period up to 3 months post SCI as the
“early phase” of paraplegic atrophy. Afterwards, a 50% stable atrophy
in spastic incomplete or complete paralysis is well documented up to
2 years after SCI [9-14]. This time span (from 1.6 to 3.0 years) in the
present paper is referred to as the “mid-term” phase (MT). Information
on the following periods, in particular, up to 20 years post-SCI, as in
our ‘long-term” (LT) group, remain quite poor [5,15]. For this reason,
we decided twelve years ago to compare by functional and structural
analyses, the muscles of SCI patients affected by either MT or LT
complete UMN paraplegia. We reported that mid-term (2 years after
SCI) and long-term (up to 20 years after injury) UMN injured muscle
does not undergo the degenerative processes (muscle fiber substitution
with adipose and fibrotic tissue) that devastate the muscles of 3-year
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Materials and methods

Patients

The study enrolled fifteen subjects who had experienced traumatic
SCI affecting the upper motor neuron (from T4 to T12). Eight of them
finished the study. All subjects enrolled in the project were volunteers,
who had received detailed information and had signed an informed
consent.

We certify that all applicable regulations concerning the ethical use
of human volunteers were followed during the course of this research.
(Approval: EK-03-035-0403).

Biopsies were obtained as pre-FES sampling from patients
who were going to undergo a 2-year FES treatment. Patients were
divided into two groups: a mid-term group composed of six patients
paralyzed from two to up five years and a long-term group formed by
four patients paralyzed from six up to twenty years. All subjects were
classified as ASIA A. Age, sex, body weight, height, etiology and level
of SCI are reported in Kern et al. 2008 [4]. Clinical and functional
assessments, muscle biopsies as well as follow-up were performed at the
Institute of Physical Medicine and Rehabilitation, Wilhelminenspital,
Vienna, (Austria), while light microscopy of bioptic specimens at the
Department of Biomedical Science, University of Padova, Italy.

Muscle biopsies

Through a small skin incision (6mm in diameter), needle muscle
biopsies were taken from the right and left vastus lateralis muscles
before start and after 2 years of FES training for each patient, as
described by Kern et al. 2004 [16]. The resulting specimens were then
prepared either for light and/or electron microscopy.

Histochemistry

Fibre typing by succinate dehydrogenase (SDH) reaction: SDH
staining was performed to distinguish between oxidative and non-
oxidative (or “less” oxidative) muscle fibers. Serial cross-sections from
SM muscles were incubated for 60 min at 37°C in SDH incubation
solution (0.1% nitro blue tetrazolium in 0.1M phosphate buffer [pH
7.2-7.6] containing 0.1M sodium succinate) and then rinsed in distilled
H20 (3 changes x 1 min). To remove unbound blue tetrazolium, the
sections were incubated in 3 changes (1 min per change) of acetone in
water solutions (30, 60, and 90% acetone) in first increasing and then
decreasing order of acetone concentration. Sections were rinsed in
distilled H2O for 3 changes (1 min each), dehydrated in graded ethanol
solutions (i.e., 70, 90, and 100%), cleared in xylene, and finally mounted
in permanent medium (Canada Balsam).

Fibre typing by myofibrillar actomyosin ATPase histochemistry:
Two different procedures were used for staining myofibrillar actomyosin
ATPase following the methods described by Brooke and Kaiser [18,19]
and by Guth and Samaha [20,21].

Alkali preincubated myofibrillar ATPase activity: Sections were
air dried for 10 min at room temperature and then fixed for 3 min in
5% (w/v) formaldehyde in a solution of 200 mM sodium cacodylate,
68 mM CaCl2 and 340 mM sucrose (adjusted with HCI to pH 7.6
before formaldehyde was added). After incubation in wash solution
(100 mM Tris and 18 mM CaCl2; pH 7.8), an alkaline pre-incubation
step was performed by maintaining the sections in 200 mM 2-amino-
3-methyl-1 propanol (pH 10.4) for 15 min at room temperature. After
two successive 1 min incubations in the wash solution, sections were
incubated in ATP solution (2.7 mM ATP, 90 mM CaCl2, 100 mM
sodium barbital pH 9.4) for 45 min at 37°C.
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Acid preincubated myofibrillar ATPase activity [22]: Sections
were air dried for 10 min at room temperature and incubated in 100
mM sodium acetate (pH 4.35) for 10 min a room temperature. Sections
were then washed (2 changes x 1 min each) in 18 mM CaCl2 and 100
mM Tris HCI (pH 7.8) before incubation in the ATP solution (together
with the serial sections undergoing the Alkali Preincubated Myofibrillar
ATPase Activity technique). After washing in 2 changes (30 sec per
change) of distilled H20O, sections were incubated for 5 min in 2% (w/v)
CoCl2, washed (2 changes x 30 sec each) in distilled H20, incubated
for 5 min in 2% (v/v) (NH4)2S in water, and then washed in distilled
H20 (2 changes x 30 sec each). Finally, the sections were dehydrated
in graded ethanol solutions (i.e., 70-90-100%), cleared in xylene, and
mounted in permanent medium (Canada Balsam).

Images were acquired using a Zeiss microscope connected to a
Leica DC 300F camera, under the same conditions that were used to
photograph a reference ruler. The minimum transverse diameter of each
muscle fiber was measured against the reference ruler. Morphometric
analyses were performed with Scion Image for Windows version Beta
4.0.2 (2000 Scion Corporation, Frederick, MD, USA), free software
downloaded from the web site: www.scioncorp.com.

Results

Size and fiber type composition of normal and UMN
paraplegic muscle fibers before and after two years of FES
training

Generally, in UMN (spastic) paraplegia human muscles reach soon
and maintain a stable atrophy (Table 1 and [4]). Equally clear is the
fact that there is a substantial increase of the relative content of the fast
type 2B fibers in the MT and LT SCI (Tables 2 and 3). Whether this is
the results of muscle fiber transformation due to SCI-induced muscle
disuse and unloading or the loss of slow type 1 and 2A muscle fiber
types is still debated.

Table 1: Diameter of normal and UMN paralyzed human muscle fibers Pre and Post 2
years of FES training

(nm +/- SD)
Type 2B Type 2A Type 1
Normal muscle 54,00+/-14,58 43,91+/-13,88 45,79+/-13,56
PRE-FES 44,17+/-4,88 42,81+/-4,33 41,42+/-4,28
POST-FES 60,53+/-3,44 not present 42,29+/-8,97

Table 2: Percentage of fiber types in normal and UMN paralyzed human muscles

Type 2B Type 2A Type 1
(%)
Normal muscle 49 10 40
PRE-FES 68 11 20
POST-FES 85 0 15

Table 3: Percentage of fiber types in UMN paralyzed human muscles in MT and LT SCI
From SCI

(Years) Type 2B Type 2A Type 1
(%)
Normal muscle 49 10 40
PRE-FES <5 59 15 25
<5 76 0 24
POST-FES >5 80 4 15
>5 91 0 9
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SDH staining

SDH is an oxidative enzyme localized in the mitochondria. The
rodents type 1 fibers that have an oxidative metabolism stain darker
than the type 2 fibers that have prevalently a glycolytic metabolism.
These differences are less pronounced in human adult muscle.
Nonetheless, the stain intensity of this mithochondrial enzyme
decreases substantially in UMN paraplegic patient muscles (results not
shown), suggesting a transition of the muscle fibers properties from
those of the oxidative to those of the glycolytic muscle fibers.

Myosin ATPase, pH 4.35

Type 1 fibers stain dark, type 2A stain light, while the type 2B fibers
are unstained. Decrease of the slow type of myosin is evident in UMN
paraplegic muscles at mid-term, while it almost disappeared in the
long-term UMN muscles, that are prevalently composed of fast type
2B muscle fibers.

Myosin ATPase, pH 9.4

After incubation at pH 9.4, myosin enzymatic activity of the fast
2B fiber type is relatively stable, whereas the slow myosin of Type 1
fiber is labile. Thus, the fast fibers stain dark, while oxidative fiber types
stain intermediate (Type 2A) or very light (Type 1). These features
allow to identify and to determine size and relative content of the 3
types of muscle fibers present in human Quadriceps m. (Tables 1 and
2, respectively). In normal muscle, the fast type 2B muscle fibers have
a larger size (around 55 um of muscle fiber diamenter), while the
oxidative muscle fibers (Types) 2A and 1 have around 45 pm of muscle
fiber diamenter. Pooling all MT and LT SCI samples all the three types
of muscle fibers decrease in diameter, while only the type 2B muscle
fibers increase in diameter after two years of FES. On the other hand,
Post-FES muscle fibers generally increase of about 50% in size.

The possible transformation of oxidative 2A muscle fibers to fast
glycolytic muscle fibers is strongly suggested when the percentual
content of the three different fiber types was determined, Table 2 shows
that in the pooled results the percentual content increase from the
normal value of 50% to 70% in UMN SCI biopsies before FES training
and to 85% after two years of FES, mainly at the expense of the 2A
fiber types that are absent in this group of muscle biopsies. This trend is
confirmed and more evident comparing the separated groups of mid-
term versus long-term UMN SCI muscle biopsies before and after 2
years of FES.

On the other hand, some muscle biopsies contain variable amount
of lower motorneuron-denervated muscle fibers (that, is severely
atrophic muscle fibers positive with the anti-NCAM [4].

Discussion

Complete spinal cord injury results often in a significant loss of
muscle mass, or atrophy, in the affected areas of the body, the severity
and extent of which depends on the level of lesion and on the survival
of the motor neurons. Muscle atrophy has been studied in SCI patients
from a variety of points of view. However, most studies in literature
are focused on the early post-injury phase and did not follow the
progression of atrophy that occurs in the long run. In the last twenty
years some of us have extensively studied long-term atrophy progression
in lower motor neuron lesion (flaccid) patients and the perspectives
of training these very difficult cases with a purpose-developed FES
training (Vienna FES strategy for denervated degenerating muscles)
[23-25]. We demonstrated that: 1. human skeletal muscles survive
permanent denervation longer (years) than generally accepted; 2. FES
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started within the first year post-SCI provides the best results, but
recovery of muscle mass and contractile function occur also in mid-
(3 years) and long-term (up to 6 years) subjects, if purpose developed
protocols, electrodes and stimulator (now commercially available) are
used [26-36].

Over the years, the benefit of the use of functional electrical
stimulation (FES) to restore movement of the limbs of paralyzed
patients has been largely discussed. For this reason information on
the long-term progression of atrophy would be actually extremely
important for the treatment of patients since it could give important
clues to physiotherapist on how and when starting FES rehabilitation
procedures and when the results will be poor or very poor. To date,
however, not much is known about the long-term progression of
muscle atrophy in upper motor neuron lesion (or spastic) patients.
Indeed, in 2008 we published the first and only study reporting results
of UMN spastic paraplegia up to twenty years from SCI [4]. In that
study we investigated the long-term progression of atrophy in spastic
patients using a multidisciplinary approach that compared a mid-
term group to a long-term group of patients, suffering with complete
UMN lesion of the spinal cord (T3-T11), enrolled in a 2-year FES
rehabilitation program. Those results confirmed that the complete
UMN SCI paraplegics loss 50% of muscle mass during the first few (3
to 6) months but indicated very little progression of the muscle atrophy
long-term (at least up to 20 years post injury), providing information
that is of significant importance for the rehabilitation of long-term
spastic patients. Furthermore, in the last 5 years we studied also elderly
persons either performing high level amateur and competitive sports
in their seventies or sedentary old septuagenarians before and after 3
months of FES training [37-45]. In all these cases we added our evidence
to an extensive literature [46], demonstrating the negative effects of
poor physical activity and the trophic recovery after an increased level
of voluntary [47,48] and/or FES-induced muscle contractile activity
maintained for weeks, months or years [36-46].

Here we added further evidence that the stable atrophy of long-term
UMN spastic paraplegia is accompanied by changes in the population
of unloaded muscle fibers that explain, together with the ultrastructural
modification we previously described [4], the poor or very poor fatigue
resistance of these heavily unloaded skeletal muscles. We show here
once again that FES training may reverse the atrophy process, though
the amount of contractile activity inducible in clinical settings do not
allow to reach the level needed to substantially increase the oxidative
metabolism and thus endurance of paretic muscles. Nonetheless, other
positive effects of the Vienna FES training is a beneficial hyperaemia of
the stimulated muscles and of the skin with aesthetic modification of
the legs and a valuable anti-decubitus ulcer effect [24,25].

Conclusions

The analyses of type of fibers in muscles of UMN paraplegic
patient before and after two-years of FES training demonstrate a
remarkable and significant size increase, restricted to fast type muscle
fibers, that increases in percentage, possibly as the result of muscle
fiber transformation related to the dramatic decrease of load that is
determined by paraplegia and a wheel-chair life-style.

Indeed, there is a decrease of oxidative muscle fibers, both the slow
type 1 muscle fiber up to the absence of 2A fiber type in POST-training
patients. An increase in relative content of the type 2B fibers is evident
and progresses with time of SCI. The diameter of the slow type 1 muscle
fibers slightly decreasew with UMN, but do not change during SCI time
progression or after FES-training.
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Our conclusion is that muscle fibers adapt to unloading and to
the decrease of contractile activity with fiber-type transformations.
However, patent degeneration of the muscle tissue, as in the case of
permanent long-term lower motor neuron denervation, was never
observed. Furthermore, the fact that extent of training-induced results
do not decreased with time from UMN SCI, is a strong evidence that
there are no upper-time limits to begin FES.
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